Educational Epiphany ™

Districtwide PLC Protocol for Mathematics

Teacher/Teacher Team:	
Grade/Course: Algebra II	
Date: Week of October 31, 2022	

#	Planning Question	Teacher/Teacher Team Response	
		nerence Tool: Access the foundational standards to make connections to pre	viously taught skills during the lesson introduction.
1	Which state standard is	Lesson 4.2 – Graphing Rational Functions	Lesson 4.3 – Multiplying and Dividing Rational Expressions
	your lesson progression addressing?	 A2.F.BF.B.3 Identify the effect on the graph of replacing f(x) with f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Foundational Standard: A1.F.IF.C.6a A2.A.APR.C.4 Rewrite rational expressions in different forms. Foundational Standard: 7.NS.A.2b 	A2.A.SSE.A.1 Use the structure of an expression to identify ways to rewrite it. Foundational Standard: A1.A.SSE.A.1 A2.A.APR.C.4 Rewrite rational expressions in different forms. Foundational Standard: 7.NS.A.2b
2	What mathematical concepts are embedded in the state standard?	 Understand that: A rational function is any function R(x) = p(x)/q(x) where p(x) and q(x) are polynomial functions. The domain of a rational function is all real numbers except any x-values for which q(x) equals to zero. The graph of a rational function has one or more asymptotes, which guide the end behavior of the graph. Students graph rational functions by finding the function's asymptotes. A vertical asymptote exists where the value of x causes the denominator of the function to be zero. Horizontal asymptotes are determined by the relationship between the degrees of the numerator and denominator. In some cases, students use long division to rewrite rational expressions as transformations of the reciprocal function and then find the asymptotes by identifying the transformation. 	 Rational expressions form a system similar to the system of rational numbers and can be multiplied and divided by applying the properties of operations as they apply to rational expressions. Students multiply or divide a rational expression by another rational expression. They also multiply a rational expression by polynomial by first writing the polynomial as a rational expression with a denominator of 1. Students write all products and quotients in the simplified form of a rational expression by dividing out all common factors other than one
3	What teacher knowledge, reminders, and misconceptions are assumed in the standard?	Use long division to relate the quotient of a reciprocal function to the parent function and use it to sketch the graph. Students should understand how to find both horizontal and vertical asymptotes and represent them graphically.	 Knowledge: Provide students with problems that make connections to work with division of polynomials and with the Remainder Theorem. Students should be about to identify the quotient by name and as q(x) and to identify the remainder as a fraction with the divisior as the denominator.

		 Students should be able to take a rational expression and graph it completely. Students should be able to use rational functions in real-world situations. Reminders: Make connections between symmetry and transformations represented both graphically and algebraically. Misconceptions: Students frequently see f(x + k) as a horizontal shift to the right k units. 	 Provide students with procedural fluency in rewriting rational expressions as quotients and remainders. Reminders: Students should understand operations with fractions and how those apply to multiplying and dividing rational expressions. Misconceptions: Misconceptions may occur when determining the correct order of operations. Students may want to cancel common variables from the numerator and denominator that have different degrees. Students may forget to or struggle with completely factoring to simplify. Students may struggle with writing the remainder as fraction.
4	What objective(s) must be taught? In what order? Why?	 SWBAT describe the effect on the graph of replacing f(x) with f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative) IOT understand and explain the differences of the transformations to f(x). SWBAT rewrite expressions IOT represent the expressions in different forms. Lesson objectives: Graph rational functions by identifying asymptotes and end behavior. Rewrite simple rational expressions in different forms using long division. 	SWBAT rewrite expressions IOT represent the expressions in different forms. SWBAT rewrite rational expressions involving addition, subtraction, multiplication and/or division IOT represent the expressions in different forms. Lesson objectives: Use the structure of rational expressions to rewrite simple rational expressions in different forms. Understand that rational expressions form a system analogous to the system of rational numbers and use that understanding to multiply and divide rational expressions.
5	What academic language must be taught before the teacher models for students? How will the academic language be taught and assessed?	 Expression – a group of mathematical numbers and/or symbols representing a number or quantity Form – the visible shape or configuration of something Represent – state or point something out Rewrite – to revise words, symbols, equations, expressions, etc. in a different way Describe – give an account in words of (someone or something) that includes all the relevant characteristics Explain – make clear by describing Graph – a pictorial diagram used to show a numerical relationship using distinctive plots. lines, bars, etc. Transformation – the mapping, or movement, of all points of a figure in a plane according to a common operation Understand – comprehend; grasp the intended meaning of; infer something from information received Rational Expression – An expression that can be expressed as the ratio of two polynomials, such as	Describe – give an account in words of (someone or something) that includes all the relevant characteristics Explain – make clear by describing Graph – a pictorial diagram used to show a numerical relationship using distinctive plots. lines, bars, etc. Transformation – the mapping, or movement, of all points of a figure in a plane according to a common operation Understand – comprehend; grasp the intended meaning of; infer something from information received Expression – a group of mathematical numbers and/or symbols representing a number or quantity Form – the visible shape or configuration of something Rational – a real number that can be written as a ratio Represent – state or point something out Rewrite – to revise words, symbols, equations, expressions, etc. in a different way

		 Rational Function – Any function defined by a rational expression, such as R(x) = p(x)/q(x), where q(x) ≠ 0 Instructional Practice 2: Strategies used to teach unfamiliar words will include: 30 – 30 – 30 (common math-related word parts in the text, problem, or objective) Point of Use Annotation of the Performance-Based Objective Universal Language of Literacy Word and Definition Walls Word Parts Context Clues Point of Use Annotation of the Text (in Real-Time) 	Simplified Form of a Rational Expression – A rational expression that has no common factors, other than 1, in the numerator and the denominator. Instructional Practice 2: Strategies used to teach unfamiliar words will include: 30 – 30 – 30 (common math-related word parts in the text, problem, or objective) Point of Use Annotation of the Performance-Based Objective Universal Language of Literacy Word and Definition Walls Word Parts Context Clues Point of Use Annotation of the Text (in Real-Time)
6	What practice problems are you planning to use for the I Do, We Do, You Do in Pairs and You Do Without Assistance? What did you learn from working the problems in advance of using them in class with students?	Station Rotation Model Suggestions Teacher-Led Station: Teachers can work with students on additional We Do problems. • 4-2 Reteach to Build Understanding Online Station: Students can engage with the Savvas Realize Explore & Reason, engage with MathXL for School: Additional Practice, or watch and engage with a Virtual Nerd Video • 4-2 Explore & Reason • 4-2: Math XL for School: Additional Practice • Virtual Nerd: How Do You Find the Horizontal Asymptotes of a Rational Function? • Virtual Nerd: How Do You Find the Vertical Asymptotes of a Rational Function? Offline Station: Students would complete problems and exercises selected for the You Do in Pairs part of the lesson. • Lesson Performance Task #35 – Pg. 209 • 4-2 Additional Practice	Station Rotation Model Suggestions Teacher-Led Station: Teachers can work with students on additional We Do problems. • 4-3 Reteach to Build Understanding Online Station: Students can engage with the Savvas Realize Explore & Reason, engage with MathXL for School: Additional Practice, or watch and engage with a Virtual Nerd Video • 4-3 Explore & Reason • 4-3: Math XL for School: Additional Practice • Virtual Nerd: How Do You Multiply Two Rational Expressions? • Virtual Nerd: How Do You Divide Two Rational Expressions? Offline Station: Students would complete problems and exercises selected for the You Do in Pairs part of the lesson. • Lesson Performance Task #37 – Pg. 216 • 4-3 Additional Practice
7	What manipulatives might be integrated into the gradual release of responsibility (I Do, We Do, You Do in Pairs, You Do	Reference: Interactive Manipulatives • Didax Virtual Manipulatives • Savvas Math Tools • Realize Desmos (Graphing Calculator) • Realize Desmos (Scientific Calculator)	Reference: Interactive Manipulatives • Didax Virtual Manipulatives • Savvas Math Tools • Realize Desmos (Graphing Calculator) • Realize Desmos (Scientific Calculator)

	Without Assistance)? What did you learn from using the manipulatives in advance of using them in class with students?		
8	What graphic organizer(s) might support students' conceptual understanding of the process outlined by the performance-based objective(s)?	Reference: Graphic Organizer Templates Google Drawing Graphic Organizers Teacher Vision	Reference: Graphic Organizer Templates Google Drawing Graphic Organizers Teacher Vision